
Journal of Statistical Physics, Vol. 76, Nos. 1/2, 1994 

Equipartition Thresholds in Chains of 
Anharmonic Oscillators 

Holger Kantz, t Roberto Livi, 2 and Stefano Ruffo 3 

Received July 29, 1993; final November 17, 1993 

We perform a detailed numerical study of the transition to equipartition in the 
Fermi-Pasta-Ulam quartic model and in a class of potentials of given symmetry 
using the normalized spectral entropy as a probe. We show that the typical time 
scale for the equipartition of energy among Fourier modes grows linearly with 
system size: this is the time scale associated with the smallest frequency present 
in the system. We obtain two different scaling behaviors, either with energy or 
with energy density, depending on the scaling of the initial condition with 
system size. These different scaling behaviors can be understood by a simple 
argument, based on the Chirikov overlap criterion. Some aspects of the univer- 
sality of this result are investigated: symmetric potentials show a similar trans- 
ition, regulated by the same time scale. 
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1. I N T R O D U C T I O N  

The numer i ca l  expe r imen t  by Fermi ,  Pasta ,  a n d  U l a m  in 1954 r was the 
first a t t empt  to check the predic t ions  of classical stat ist ical  mechanics  in 
H a m i l t o n i a n  systems. The  result  was a surprise:  the expected ergodici ty  of 
the system was no t  observed  for smal l  exc i ta t ion  energies. In  such a case 
ini t ial ly excited h a r m o n i c  modes  tu rned  ou t  to be stable over  the accessible 
c o m p u t a t i o n  time. M o r e  recently,  Izrai lev an d  Chi r ikov  t2) showed that  at 
sufficiently high energies the H a m i l t o n i a n  models  of Fermi ,  Pasta ,  and  
U l a m  ( F P U )  relaxed to equ ipa r t i t i on  of the energy a m o n g  the F o u r i e r  
modes.  

These  results have inspired fur ther  numer ica l  s tudies of the re laxa t ion-  

Department of Theoretical Physics, University of Wuppertal, D 42097 Wuppertal, Germany. 
2 Dipartimento di Fisica, Universitfi di Bologna, 1-40126 Bologna, Italy, INFN and INFM. 
3 Dipartimento di Energetica, Universitd di Firenze, 1-50100 Firenze, Italy, INFN and INFM. 

627 

0022-4715/94/0700-0627507.00/0 �9 1994 Plenum Publishing Corporation 



628 Kantz e t  al .  

to-equilibrium dynamics in various nonlinear Hamiltonian models with 
many degrees of freedom. 13'4~ It is now well established that the transition 
from an integrable-like behavior to an ergodic one is a generic property 
of such models: around some finite value of a control parameter (e.g., 
the energy or energy density) one typically observes a transition region 
between a "regular" dynamics and a chaotic regime. Well above this 
"threshold" one can detect all the typical attributes of large-scale chaos 
such as an asymptotic distribution of positive Liapunov exponents, positive 
KS entropy, 151 and fast relaxation to equipartition of the energy. ~6'7~ 

A deeper understanding of this phenomenon would demand a 
systematic study of the dependence of the threshold on the number of 
degrees of freedom N in the system, on the initial condition, and on the 
observation time t. 

The guiding idea of this work is that this information can be arranged 
in a consistent framework if some scaling property with N characterizes all 
dynamical quantities in the transition region. More precisely, we show that 
for the FPU-fl model a proper rescaling of the observation time and of the 
initial condition with N allows us to represent the spectral entropy t6) 
(i.e., the "probe" observable) as a quantity independent of N when plotted 
versus the total energy of the system. If only the observation time is 
rescaled with N, the spectral entropy has again a "universal" behavior if 
plotted versus the energy density. 

These results extend to a wide class of nonlinear separable 
Hamiltonian models, thus improving significantly our knowledge about the 
stochasticity threshold in the thermodynamic limit. 

The structure of the paper is the following. In Section 2 we introduce 
the normalized spectral entropy q. The dynamical properties of this 
quantity for the FPU-fl model are analyzed in Section 3. 

Section 4 is devoted to analyzing the dependence of q on the initial 
condition for fixed N. The decay of q toward zero allows us to locate the 
threshold of finite-size systems. The thermodynamic limit for large but 
finite values of time is investigated in Section 5. We consider the two cases 
where the initial conditions are rescaled or not with N. A simple argument 
identifies the dynamical mechanism at the origin of the scaling properties 
of q. This argument identifies also the proper control parameter (energy or 
energy density). 

In Section 6 we extend this analysis to two classes of Hamiltonian 
systems. For the threshold behavior we show that all the symmetric poten- 
tials reproduce the properties of the FPU-fl model. The more complex 
scenario obtained for the FPU-ct model and for the Toda lattice ~8~ 
contributes to further clarifying the reliability of our analysis. Conclusions 
and perspective are contained in Section 7. 
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2. T H E  N O R M A L I Z E D  S P E C T R A L  E N T R O P Y  

In this paper we investigate the dynamical properties of FPU-like 
chains, i.e., 1D systems of N anharmonic oscillators with the Hamiltonian 

H(p, x ) =  + U(Ax,)  
i = 1  i = 1  

(2.1) 

where Axe= Xi+ 1 -- X i and we impose periodic boundary conditions, i.e., 
xN+ , = x , .  The nonlinear potential U(Axi)  is chosen in such a way that it 
is harmonic in the small-energy limit, where Fourier modes represent the 
normal modes of the chain. In this limit any solution of the Hamiltonian 
equations will remain close to the Fourier mode representation of the 
initial condition for a very long time. For high energy the nonlinear com- 
ponent of the potential favors the exchange of energy among the modes, 
possibly leading to the equipartition of energy. Therefore a natural approach 
to measure the effect of increasing energy is the one pursued in ref. 6, namely 
computing the spectral entropy S(t).  This is defined as follows: 

N/2 El( t)  (2.2) S( t )  = - ~ pl( t )  log pl(t) ,  p l ( t )  E t E l ( t )  
I = 1  

E,(t)  is the energy in mode 1 at time t. Furthermore, we introduce the 
normalized spectral entropy r/(t): 

sm.x-s(t) 
~/(t)  = ( 2 . 3 )  

Sma  x - -  S(O) 

where Smax=log N/2 corresponds to an equal amount of energy in 
each mode (energy equipartition), and S(0) is the entropy of the initial 
condition. Fourier mode analysis applies by substituting xs( t )= 
~.~/--o ul(t)  cos k l j +  vl(t) sin k l j  into (2.1). Because of periodic boundary 
conditions, one has k~ = 2xl/N.  The energy E~ is given by 

El = -~N [ it ,2 + f; ~ + oh ( u y + v ~ ) , (2.4) 

where wt= 2 sin nUN. In our numerical simulations we compute ut, v/, t%, 
and ~, by applying a FFT routine to both space and momentum variables. 
To suppress fluctuations we average q(t) over a finite time interval, which 
we fix to 256 time units in all the following numerical analysis (this choice 
amounts to averaging over high frequencies maintaining the relevant 
information for the long-time behavior). 
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According to Eq. (2.3), r/(t) is a positive quantity; moreover, 

log AI ~ - 
r/(t)~< 1 log 17/2./ 

where Al is the number of initially excited modes, each one containing the 
same amount of energy. Energy transfer from the initially excited modes 
is detected by decreasing values of r/(t). Observe that q is unstable with 
respect to fluctuations of S( t )  when a large number of normal modes is 
initially excited [i.e., A I ~ O ( N / 2 ) ] ,  since the denominator of Eq. (2.3) 
becomes very small. In such a case even the upper bound of r/(t) diverges. 
Nevertheless, since we are interested in studying relaxation to equilibriuim 
starting from far-from-equilibrium initial conditions, we shall choose zll not 
too large such that r/ is a proper quantity. Finally, let us stress that the 
results of the following analysis may depend on the choice of the basis of 
normal modes underlying the definition of E/ in Eq. (2.4), as we discuss 
briefly in Section 6. 

3. THE  N D E P E N D E N C E  OF TYP ICAL  T I M E  SCALES 

Using q as our indicator for energy sharing among normal modes, we 
are faced with the problem of the dependence on three variables, namely 
the energy of the system E, the number of degrees of freedom N, and the 
observation time t. In principle one would be interested in investigating the 
time-asymptotic properties of r/. However, in numerical simulations this 
limit cannot be always obtained on reasonable time scales. Lengthy 
numerical simulations on long time spans are avoided if one observes a 
scaling behavior of q in t when N is varied. 

We have explicitly checked this conjecture in the FPU-fl model, 4 
where U(Axi)  = �89 2 + �88 4 and fl =0.1 in all our simulations. In 
Fig. 1 we show q as a function of the energy at different times. Its time 
dependence is characterized by three different regimes: For E <  l, q(t) 
remains constant close to 1 with fluctuations of very small amplitude (an 
exponentially slow diffusion of q to 0 cannot be excluded according to the 
Nekhoroshev resul(9~). For large values of the energy ( E >  100) r/ decays 
rapidly to a limiting value, remaining constant with small fluctuations. It 
is evident that in both of these energy regions the long-time behavior is not 
affected by a rescaling of the time. The only part of the curve that can be 

4 For all numerical work we use the symplectic leapfrog integrator with a step width of 
6t = 0.04/x/-E. Thus from here on our unit of time t corresponds to 25. x/~ steps of the leap- 
frog integrator. 
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Fig. 1. Plot of v/ as a function of the energy after different times for the FPU-fl mode[ 
( N =  128, modes 4-19 are initially excited with the same energy). Plotted are the averages of 
~/over the last 256 time steps, the errors bars indicating the fluctuations. 

characterized by a nontrivial time dependence is the transition region 
between the previously mentioned regimes, i.e., l<E<lO0,  where no 
asymptotic behavior can be easily obtained by numerical simulations. 

In Fig. 2 we present the curves r/(E, z, N) at a fixed energy E =  10 for 
different N as a function of the rescaled time r = tiN. Initially all modes in 
the interval [N/32, 3N/32[ are excited with an equal amount of energy. 
Note that by this choice the central frequency of the initially excited packet 
is independent of N. We find evidence that the data collapse on the same 
curve, i,e., the typical time scale increases linearly with system size. We 
have obtained the same result for various values of E in the stochasticity 
threshold region. 

Let us recall that ~/ is defined in terms of the eigenmodes of the 
harmonic chain, whose eigenfrequencies are ~ l =  2 sin(lrl/N), le [0, N/2]. 
Since the relevant time scale for equipartition of the energy is set by those 
modes which are the slowest to gain energy, the observed scaling suggests 
that these are the low-lying modes, whose eigenfrequencies are approx- 
imately proportibnal to 1IN. In fact, we have also checked numerically that 
the harmonic energies of the initially unexcited modes increase the more 
slowly, the lower is the mode number. This can be justified by observing 
that in the nonlinear terms of the equations of motion for mode amplitudes 
one can factor out the eigenfrequency of the mode. 
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4. THE SHAPE OF THE T H R E S H O L D  FOR FIXED N 

Before we pass to our main goal, namely determining the asymptotic 
properties of r/for large N, we study its dependence on initial conditions for 
fixed N. From this analysis we obtain important information about the 
threshold behavior of r/. 

We restrict our numerical work to the study of the relaxation proper- 
ties of initial condition, where a packet of Fourier modes with equal 
amount of energy and random relative phases is excited. The initial values 
of the momenta are all set equal to zero. In Fig. 3 we present the results 
for different packet excitations. Each data point represents the average 
over r/(E, T = 80, N =  128) obtained from four different realization of the 
random phases. It turns out that the shape of the curves is determined only 
by the number of excited modes and not by their wave number (within the 
given errors). But let us analyze the curves in more detail. 

As already shown in Section 3, the small-energy region corresponds to 
r/~ 1 independently of the initial conditions. There are very small fluctua- 
tions around this value, but no instability was detected in our numerical 
simulations up to t = 106 for E~< 1 and N ~  128. 

In the high-energy limit r/ drops down to a small, almost constant 
value which depends on AI/N only. This is not an artifact of the numerical 
simulation, but also a consequence of the fluctuations of the mode energies 
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Fig. 3. Plot of r/(E, z, N) for r = 80 for different initial conditions (FPU-/~ model, N = 128). 
The indicated modes are excited with an equal amount of energy and random relative phases, 
each data point being an average over four different realizations. Note that the right part of all 
curves corresponds to the same entropy S, the differences in t/originating in the normalization. 

in the equipartition regime, c1~ The calculation in ref. 10 is indeed done for 
a chain of harmonic oscillators under the assumption that a weak coupling 
between them causes ergodicity. In this case the distribution of energies is 
Boltzmannian, and using the partition function, one can compute, in the 
linear approximation, the value of r/averaged over infinite time by averag- 
ing over the phase space. The result is t/~rgod~c = ( 1 -  C)/'ln(N/2AI), where 
C =  0.5772 is the Euler constant and .4l is the number of initially excited 
modes. Numerically we find that r/,rsodi r is an upper bound to r/(E, z, N) for 
large values of E and z (see Figs. 1 and 3). For instance, for .41/N= 1/16, 
r/,~sodi c ,~ 0.2, whereas we find 0.12. This disagreement may be due to non- 
linear contributions to the partition function, which cannot be neglected 
for large energies. Nevertheless, the linear calculation correctly predicts the 
increase of r/ with AI in the large-energy region. 

The crossover between the low- and high-energy asymptotic regimes is 
first characterized by the region of energy where ~/becomes larger than 1. 
The origin of the "bumps" in Fig. 3 can be interpreted as an instability of 
the harmonic modes leading to a concentration of energy in fewer modes 
than the initially excited ones. The dynamics of r/in this energy range (see 
Fig. 4) resembles quasiperiodic motion, the oscillations yielding an average 

8 2 2 / 7 6 / 1 - 2 - . 4 2  
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Fig. 4. The instantaneous value of q as a function of time, N =  128, E = 4 ,  modes 4-19 
initially excited. The insert shows the mode energies E i versus mode number  / at time t = 0 
(broken curve) and t =  53000 ( r /=  1.44) (solid curve). 

of 17 larger than 1. This behavior is maintained up to t = 106, thus excluding 
that we are in fact observing a transient behavior. The insert in Fig. 4 
shows how the mode energies of a packet excitation have changed after 
t = 53,000. We argue that in the whole region with r/> 1 the FPU-fl model 
is close to some integrable nonlinear Hamiltonian, where a packet of 
initially excited harmonic modes is slightly deformed in a superposition of 
the stable nonlinear eigenmodes. It is reasonable to assume that there are 
two different mechanisms of destabilization of eigenmodes at the upper- 
and lower-energy boundaries of the r/> 1 region. Nevertheless, we expect 
that both are related to the magnitude of the energy Et of each initially 
excited harmonic mode and not simply to the total energy of the system. 
This is confirmed by the observation that the energy Er.a~ at which q 
reaches its maximum is approximately proportional to AI. 

For energies larger than Ema x the corresponding r/ curves decrease, 
reflecting a destabilization of the nonlinear eigenmodes. For energies larger 
than 20 the curves are characterized by a fast loss of memory of the initial 
conditions (see Fig. 4). This latter energy is quite close to Emax = 16, which 
can be obtained extrapolating the linear behavior of Er,~ as a function of 
.41 to .4l= 64, the largest possible value for N =  128. Actually, for such an 
initial condition, corresponding to equipartition of the energy among the 
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Fourier modes ,  r/ is not a conveniently defined quantity. The effect of 
reduction of the entropy S in the bump region starting from this initial 
condition can be better detected by quantity 0 = 1 - S(t)/Smax. AS we show 
in Fig. 5, 0 grows with a power law up to an energy Ema~" 16 and then 
saturates. This is further evidence that the equipartition state (correspond- 
ing to f / =  0) is unstable below this energy and stabilizes, for higher values 
of the energy, to a value compatible  with Gibbsian fluctuations (see 
Section 4). 

5. THE  T H R E S H O L D  IN THE T H E R M O D Y N A M I C  L IMIT  AT 
FINITE T I M E S  

In this section we study the behavior of q~(E, N) - q(E, TN, N) for dif- 
ferent values of N. We have chosen r = 16, which allows numerical analysis 
up to N = 1024 on a Cray X - M P  computer.  In Fig. 6 we plot q~ = t6 versus 
the energy E for different system sizes. All modes  / e  [N/32 ,  5 N / 3 2 [  are 
initially excited with the same amount  of energy. Thus the number of 
excited modes  is scaled with N to investigate thermodynamic  limit proper- 
t i es )  Again, each data point in Fig. 6 is as average over four different initial 
condit ions of the same modes  excited with equal energies, but with different 

5 After the previous section we know that a different choice for the rescaled packet of modes 
would change the shape of the r/curve in the region of the "bump," but not in the decaying 
part of the curve. 
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Fig. 6. Plot of q ( r=16)  as a function of the total energy E for different system sizes 
(#-model). Initially modes l~ [N/32, 5N/32[ are excited. 

relative phases between the cosine and the sine waves. The error bars are 
the variance of these values. The data fall very nicely onto a common 
curve, confirming that the relevant control parameter for this kind of initial 
conditions is energy rather than energy density. This is true from 128 to 
1024 degrees of freedom. For the N =  64 system we observe a small devia- 
tion at the "bump." The small number of excited modes together with 
finite-size effects are at the origin of these differences. 

We have also studied the case of lo = I and AI=  3 fixed independently 
of N. In this case the different r/ curves superpose if they are plotted as a 
function of the energy density, as shown in Fig. 7. 

A simple argument can explain these two different results. 6 The 
Hamiltonian of our model can be expressed approximately in terms of the 
harmonic action variables I = (11 ..... IN) as follows: 

H=Ho+AH 
(5.1) 

H o = ~ ' l ,  A H = ~ ( r  2 

The width of t h e / t h  resonance Aco/can be estimated by 

.4H;~/~ o~i, =/~ 

6 The argument was suggested by D. Shepelyansky. 

(5.2) 



Equipartition Thresholds 637 

~S 
v 

t ~  

, J  

Fig. 7. 

1 . 2  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

. . . . .  , . . . . . . . .  | . . . . . . . .  i . . . . . .  

N= 128 :e : 
N= 256 ' ' ' 

...... 41----e--.-.o~.... N = 512 ' ,-I , 

;~i~k {~ ~ ~ N=I024 :z. 

"'~:~I- .... 

0 . . . . . . . .  ' . . . . . . . .  | . . . . . . . .  i . . . .  . . . .  

0 . 0 0 0 1  0 . 0 0 1  0 . 0 1  0 . 1  1 
E /N  

Plot  of r/ as a function of the energy densi ty E/N for the FPU-f l  model  with r = 16. 
Initially,  the modes  l = 1, 2, 3 are excited with equal  energy. 

where E~ is the energy of the lth mode. In the acoustic branch of the 
spectrum (small / values) the distance between nearby resonances is 
6~~ 1/N (independent of l). According to the Chirikov criterion, l '~  large - 
scale chaos sets in if .4o9 t ~ 6t, i.e., 

flo91El~ 1 (5.3) 

For initial conditions where l increases proportionally to N, og~~l/N= 
const, is a finite value independent of N and the Chirikov criterion estab- 
lishes a threshold value for the energy of the system 

1 Ethr,s (5.4) 

while when fixing lo and At independent of N, o9~..~ 1/N such that the 
threshold is determined by the energy density 

(5.5) 

It is evident that the two cases discussed in this section correspond to 
the different ways of performing a thermodynamic limit. The first one is 
the correct way if one wants to describe the dynamics of an anharmonic 
crystal where the initially excited frequencies are defined as the relevant 
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physical quantities. The second case does not seem to have physical 
relevance in the thermodynamic limit, since any initially excited frequency 
would tend to zero; it can be physically interesting only for finite systems. 

Let us summarize the results for the FPU-fl model. For the type of 
initial conditions that we consider as physically relevant we find a double 
threshold in the energy, the first being a transition from linear to nonlinear 
stable eigenmodes, the second indicating equipartition of energy in the 
Fourier modes. Both threshold energies are independent of the system size 
and they are true thresholds in the sense that they are independent of 
the observation time (see Fig. 1). Nevertheless, the relevant time scale for 
the equipartition of energy among the Fourier modes is proportional to the 
system size. 

6. THE UNIVERSALITY  OF THE N O R M A L  M O D E  ANALYSIS  

In this section we extend our analysis of the stochasticity threshold to 
various models defined in Eq. (2.1). Specifically, we compare the threshold 
behavior of the following potentials U(ax,): 

1 Ax~ + 1 IJx,I  3 

1 
- -  ( e b a " ' + e  -ha ..... 2) 
2b 2 

1 , 1 a 
$ ax7 + ~ ~ax; 

L(eaa"'--~Jx, \ 

symmetrized FPU-~ model (6.1) 

symmetric Toda potential (6.2) 

Gaussian potential (6.3) 

FPU-ct model (6.4) 

Toda potential (6.5) 

The total energy is not an appropriate parameter for this comparison, 
because the energy scale of the anharmonic components (responsible for 
the threshold behavior) greatly varies with the model. A more reasonable 
quantity is the ratio between the energy of the anharmonic component of 
U ( d x i )  and the harmonic one at t---0 (provided that we consider initial 
conditions with vanishing kinetic energy): 

lET=, �89 
= ~ = ,  ~ax,~ 2 (6.6) 
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In fact, for a fixed value of this extensive pa ramete r  the anharmonic  
energies of all the models  have the same magnitude.  7 

F o r  our  numerical  s imulat ions we choose N =  128 and z = 40, which 
corresponds  to roughly 1600 per iods  of the fastest ha rmonic  and 40 per iods  
of the slowest one. The q curves as a function of e for the potent ia ls  in Eqs. 
(6.1)--(6.5) are shown in Figs. 8 and 9. Again, for all systems we have 
r/(~ ---, 0) ,~ 1 and ~/(e --* oo ) = const  ~ 0. 

The  main  differences occur  in the t ransi t ion region. The r/(e) curves of  
the symmetr ic  potent ia ls  superpose very nicely and exhibit  a region where 
~/> 1 (Fig. 8). The arguments  used in Section 4 to explain the origin of the 
t ransi t ion apply  to all of these models.  Actually,  the t ransi t ion region is 
located at e ~ 1 0 - ' ,  thus indicat ing that  the quar t ic  nonl inear i ty  is the 
dominan t  one. On  the other  hand,  also the symmetr ized FPU-ct model  
shows the same quant i ta t ive  behavior.  We have no analyt ical  a rgument  to 
interpret  this result; nevertheless, it confirms that  e is a proper  control  
parameter .  

7A simpler choice would amount to rescaling the energy by a factor 13 (ct-') for potentials 
having (fl/4)zix~ [(ct/3)zix~] as the leading nonlinear contribution in the Taylor expansion 
of U. Beyopd the impossibility of applying this to model (6.1), this way of rescaling the 
energies becomes insignificant if high-order nonlinear terms dominate in the transition 
region. 
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Fig. 9. Plot of r/as a function of e for the FPU-ct model and the Toda chain after different 
times -r, ranging from z=2  to z= 1022 and spaced by powers of 2 (N= 128, modes 4-19 
excited). Plotted are the averages of ~/during the last 256 time steps, the error bars indicating 
the fluctuations. The curves for the FPU-ct model terminate at e ~< 0.21, since the trajectories 
eventually escaped due to the unboundedness of the potential. All points shown in this figure 
are taken for situations where the trajectory was well inside the bounded region such that the 
decay of r/is not related to this possibility of escape. 

F o r  the F P U - ~  mode l  a n d  the T o d a  cha in  the scenat io  is m o r e  com-  
plicated. Since the T a y l o r  series expans ions  of the two models  coincide  up  
to third order,  we expect a superpos i t ion  of the ~/(e) curves for sufficiently 
smal l  e. This  is what  one  can  observe in Fig. 9 up  to e ~ 0.05 i n d e p e n d e n t  
of time. In  con t ras t  to the symmet r i c  models ,  no  clear " b u m p "  s t ruc ture  
exists in bo th  models.  F o r  larger  values  of e the r /curves  of the T o d a  lattice 
r ema in  t ime i n d e p e n d e n t  an d  decay slowly in e, while in the FPU-ct  m ode l  
~/decays as t ime is increased.  T h u s  we locate a t i m e - i n d e p e n d e n t  th reshold  
for the ct mode l  at e ~ 0 . 0 2 ,  s O n  the cont ra ry ,  for the T o d a  mode l  the 
s m o o t h  decay of ~/(e) i n d e p e n d e n t  of t ime does no t  al low us to define a 
threshold  for the equ ipa r t i t i on  of energy. This  is no t  surpr i s ing  if one  
considers  tha t  the T o d a  latt ice is an  in tegrable  modeL (s) F o r  large values  
of e the e igenmodes  of the T o d a  latt ice are k n o w n  to be sol i tons  whose 
Fou r i e r  represen ta t ion  averaged in t ime spreads  over  a b r o a d  band ,  thus  

8 From Eq. (6.4) it is evident that the potential forms a well with a finite height. Thus for large 
e a trajectory may escape from this well leading to unbounded motion and a numerical 
overflow. 
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leading to equipartition of the energy in Fourier space, if e is large enough. 
This is in agreement with ref. 12, where it is shown that numerically 
computed time averages coincide with analytically computed ensemble 
averages. The numerical simulations in ref. 12 were done for energies 
ranging between 100 and 106, with N =  1000, corresponding to the range 
0.2 < e < 25 for our class of initial conditions. 

7. C O N C L U S I O N S  

We present numerical evidence of some properties of the normalized 
spectral entropy r/, which allows us to characterize the presence of a 
stochasticity threshold as a general feature of many-degrees-of-freedom 
Hamiltonian models. More precisely, we show that: 

1. The relevant time scales behave proportionally to the system size 
N, i.e., systems with different N are "dynamically" equivalent at 
the rescaled time r = t/N. 

2. For initial conditions where the number of excited modes and 
their mode numbers are rescaled proportionally to N the spectral 
entropy r/depends only on the total energy and not on N. 

3. The energy density is the correct control parameter when the 
mode numbers of the initially excited modes are kept fixed when 
varying N. 

It is worth observing that for the rescaled initial conditions in the 
thermodynamic limit both the central frequency of the initially excited 
wave packet and the density of modes inside it are constant. This is the 
correct way to define the thermodynamic limit for a dynamical model of a 
physical system where quantities like the total energy are finite. 

Another important result is that the class of Hamiltonian models 
having a quartic term as leading nonlinearity exhibit the same threshold 
behavior as the FPU-/3 model. This is far from trivial, because a priori 
there is no reason to conclude that the time scale associated to the quartic 
nonlinearity is responsible in any such model for the decay of the spectral 
entropy around the threshold value of the energy. 

These results seemingly contradict previous findings reported in ref. 6, 
where the equipartition threshold of the FPU-/~ model was determined by 
plotting the "asymptotic" value of t/ as a function of the energy density, 
using the same type of rescaled initial conditions that in this paper show 
t/ depending only on the total energy. The disagreement derives from the 
fact that r/values for larger N's in ref. 6 were obtained with shorter integra- 
tion times and averaging over larger time intervals, due to the short 
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available computer time and to poor statistics. Thus, for larger values of N, 
t/ was not yet "asymptotic." For instance, considering Fig. 6 of this paper, 
if the data were plotted as a function of E/N, one would observe regularly 
shifted curves toward lower values of E/N. The integration times for larger 
N's are increasing linearly in N, while in ref. 6 they were decreasing with 
N, thus producing a superposition of data corresponding to different N's. 
One might still think that the data in ref. 6 suggest a scaling of the form 
~7 = ~7(E/N, i f(N)),  with f ( N )  increasing with N. This scaling form is not 
in contradiction with the one proposed in this paper, but, without any 
analytical input on the function f ( N ) ,  it is extremely hard to verify 
numerically. 

Nonsymmetric potentials like the FPU-a model and the Toda lattice 
show some different features with respect to the symmetric case. Nonethe- 
less, the former is still characterized by the presence of a stochasticity 
threshold which is again identified by a sudden decay of the time-rescaled 
spectral entropy t/. Even the Toda lattice, which is known to be integrable, 
possesses a mechanism of energy sharing among the Fourier modes; its 
main peculiarity is that in broad range of energies r/relaxes very fast to an 
asymptotic value r/(~) different from the equipartition value, thus showing 
a smooth transition rather than a sharp threshold. 

This means also that equipartition of energy among the eigenmodes is 
not necessarily approached on the same time scale when the basis is 
changed. For instance, the extreme situation is obtained when the initial 
condition in Fourier space is projected on the basis of the Toda nonlinear 
eigenmodes and the weights pt in Eq. (2.3) are redefined in the new basis. 
It is obvious that in this case for the Toda chain t/(~)= 1 at any time, in 
the whole energy range, 

Recently a similar scaling property for the relaxation to equipartition 
was proposed in ref. 13. Although there is not complete agreement con- 
cerning the scaling of time with the number of degrees of freedom, it is 
remarkable that also these authors show that the relaxation to equiparti- 
tion is ruled by the total energy. 
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